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EXERCISES
Mathematica 6 ∼ Lab Number 3

Problem 1. TrigExpandTrigExpandTrigExpand the functions tan 2θ and cos 6θ. Then SimplifySimplifySimplify your
results.

Problem 2. TrigReduceTrigReduceTrigReduce the functions sin2 θ and tan2 1
2θ. Then SimplifySimplifySimplify your

results.

Problem 3. “Magic squares” have fascinated mathematicians for many centuries.
The following example

M =

⎛
⎜⎝

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

⎞
⎟⎠

is taken from an engraving by Albrecht Dürer. Create a link to the Mathworld
website that discusses Dürer’s magic square.

M displays all the integers from 1 through 16, and has the ”magical”
property that

∑
any row

=
∑

any column

=
∑

counter diagonal

=
∑

principal diagonal

≡ trace

Ask Mathematica to evaluate

1) trM

2) det M

3) the eigenvalues of M

4) the eigenvectors of M

Notice that you had no reason to expect the eigenvalues to real, but that they
turned out “magically” to be so.

Let the eigenvectors (which Mathematica has presented as lists) be called
a, b, c and d. Evaluate each of the following ten dot products (command a.aa.aa.a,
etc.):

a · a a · b a · c a · d
b · b b · c b · d

c · c c · d
d · d
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What do you conclude about the relation of d to a, b and c?
Look finally to the validity of each of the four claims that

(matrix)(eigenvector) = (eigenvalue)(eigenvector)

Problem 4. Here is a “Latin square” (each row and each column presents a
permutation of {1, 2, 3, 4}):

L1 =

⎛
⎜⎝

1 2 3 4
2 1 4 3
4 3 1 2
3 4 2 1

⎞
⎟⎠

Create a link to the Wikipedia website that discusses Latin squares.
Evaluate det L1 and list the eigenvalues of L1.

Problem 5. The following Latin square

L2 =

⎛
⎜⎜⎜⎝

1 4 2 5 3
4 2 5 3 1
2 5 3 1 4
5 3 1 4 2
3 1 4 2 5

⎞
⎟⎟⎟⎠

is distinguished by (among other properties) its symmetry about the principal
diagonal. . . on which grounds we are assured that the eigenvalues must be real.
Evaluate det L2 and list the eigenvalues of L2. Use N[% ]N[% ]N[% ] to list approximate
numerical values of the eigenvalues (which Mathematica prefers to give exactly,
when it can).

Problem 6. Now introduce (in the 22 place) one small symmetry-preserving typo
into the description of the preceding matrix, writing

L3 =

⎛
⎜⎜⎜⎝

1 4 2 5 3
4 3 5 3 1
2 5 3 1 4
5 3 1 4 2
3 1 4 2 5

⎞
⎟⎟⎟⎠

Evaluate det L3 and list the eigenvalues of L3; you find that Mathematica,
confronted with the solution of a quintic, responds unhelpfully to the latter
command. See how Mathematica responds now to the command
N[% ]N[% ]N[% ]

Compare those results with the results produced by the commands
CharacteristicPolynomial[L3,x]CharacteristicPolynomial[L3,x]CharacteristicPolynomial[L3,x]
spectrum=x/.NSolve[% == 0, x ]spectrum=x/.NSolve[% == 0, x ]spectrum=x/.NSolve[% == 0, x ]
Notice that this little exercise—mere child’s play for Mathematica—involves
labor you certainly would not want to undertake by hand!
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Problem 7. In the theory of one-dimensional crystals one encounters high-
dimensional symmetric matrices of the form

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b a b 0 0 0 0 0 0 0 0 0 0 0 0 0
0 b a b 0 0 0 0 0 0 0 0 0 0 0 0
0 0 b a b 0 0 0 0 0 0 0 0 0 0 0
0 0 0 b a b 0 0 0 0 0 0 0 0 0 0
0 0 0 0 b a b 0 0 0 0 0 0 0 0 0
0 0 0 0 0 b a b 0 0 0 0 0 0 0 0
0 0 0 0 0 0 b a b 0 0 0 0 0 0 0
0 0 0 0 0 0 0 b a b 0 0 0 0 0 0
0 0 0 0 0 0 0 0 b a b 0 0 0 0 0
0 0 0 0 0 0 0 0 0 b a b 0 0 0 0
0 0 0 0 0 0 0 0 0 0 b a b 0 0 0
0 0 0 0 0 0 0 0 0 0 0 b a b 0 0
0 0 0 0 0 0 0 0 0 0 0 0 b a b 0
0 0 0 0 0 0 0 0 0 0 0 0 0 b a b
0 0 0 0 0 0 0 0 0 0 0 0 0 0 b a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with a = 2 and b = −1. Proceed as in Problem 6 to construct (in two different
ways) a list of the eigenvalues of S; then use
ListPlot[spectrum, PlotStyle->PointSize[0.02]]ListPlot[spectrum, PlotStyle->PointSize[0.02]]ListPlot[spectrum, PlotStyle->PointSize[0.02]] to display that data.

It is found to be analytically convenient to impose “periodic boundary
conditions” (physically: to tie the last atom to the first, forming a ring of
atoms, each interacting only with its nearest neighbors). The matrix S has
then to be adjusted

0 → b in upper right and lower left corners

Proceed as before to plot of the spectrum of the modified matrix, and compare
it to the previous spectrum.

To model the introduction of an impurity we might study (for example)

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b a b 0 0 0 0 0 0 0 0 0 0 0 0 0
0 b a b 0 0 0 0 0 0 0 0 0 0 0 0
0 0 b a B 0 0 0 0 0 0 0 0 0 0 0
0 0 0 B A B 0 0 0 0 0 0 0 0 0 0
0 0 0 0 B a b 0 0 0 0 0 0 0 0 0
0 0 0 0 0 b a b 0 0 0 0 0 0 0 0
0 0 0 0 0 0 b a b 0 0 0 0 0 0 0
0 0 0 0 0 0 0 b a b 0 0 0 0 0 0
0 0 0 0 0 0 0 0 b a b 0 0 0 0 0
0 0 0 0 0 0 0 0 0 b a b 0 0 0 0
0 0 0 0 0 0 0 0 0 0 b a b 0 0 0
0 0 0 0 0 0 0 0 0 0 0 b a b 0 0
0 0 0 0 0 0 0 0 0 0 0 0 b a b 0
0 0 0 0 0 0 0 0 0 0 0 0 0 b a b
0 0 0 0 0 0 0 0 0 0 0 0 0 0 b a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



4

with (say) A = 3 and B = −2. Proceed as before: plot the spectrum, and
compare it with the original spectrum.

The results just obtained would have been much more revealing—more
valuable as “toy solid state physics”—if we had assumed the crystal to contain
not just 16 “atoms” but (say) 16,000. But the keyboard labor to describe a
16000× 16000 matrix to Mathematica requires a higher level of technique than
the one to which we presently aspire.

Problem 8. The physical question: What is the gross spin angular momentum
of the sun, and how does it compare to what would be the angular momentum of
an equivalent number of stationary protons if each contributed a “proton spin”
given by 1

2� (where, by universal convention, � ≡ h/2π)? To approach the
problem you will find it convenient to install a couple of standard packages,
which is accomplished by commanding
Needs["PhysicalConstantsNeeds["PhysicalConstantsNeeds["PhysicalConstants`̀"]"]"]
Needs["UnitsNeeds["UnitsNeeds["Units`̀"]"]"]
To gain some sense of the resources now at your command, you might ask
Mathematica about
?SolarMass?SolarMass?SolarMass (use ConvertConvertConvert to convert to kilograms)
?SolarRadius?SolarRadius?SolarRadius
?ProtonMass?ProtonMass?ProtonMass
?PlanckConstant?PlanckConstant?PlanckConstant
and accept as given that the solar rotational period is 25.36 days. Use that
information to compute (i) the angular momentum of the sun, assumed to
rotate as a homogeneous solid sphere; (ii) the equivalent number of protons;
(iii) the spin angular momentum (at 1

2�/each) of such a population, assuming
(preposterously!) that all the spins are aligned; (iv) the ratio (latter/former).
Be sure to display your final answer as a dimensionless number.


